Expert Insights

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

The difference between chemistry as it happens in a flask, chemistry as we show it on paper or in a textbook and helping students to understand that these are representations and they're conceptual frameworks that we use to understand our discipline and so helping them put those two pieces together.

So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides.  I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. 

They struggle with the language of chemistry.  So we sort of need to teach them the process and how to work out how to do these things.  We know that their tendency is just to attempt to memorise reactions.  Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. 

In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions.  They have set questions on sheets that they work through in groups and the groups of three just get one set.  They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going.  In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that.

Students should [only] be limited by students' curiosity.

It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here.  If I say ‘think of a famous physicist’ you probably already have thought of three.  Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones.  You do the same thing with biologists.  If I say to think of a famous chemist … that's within chemistry circles, we can't do it.  We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea.  So for some reason … we've never … chemists have never been able to popularise our topic, our content.  We've never been able to make it exciting enough that someone who is not studying it still wants to know about it.  And so I do think we've got a bigger challenge, for whatever reason.  Maybe there's something about chemistry that makes it less enjoyable, I don’t know.  There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity.  You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein.  And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing.  I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue.  We teach them in third year to the remaining hard core people that are left. 

In the lab it comes out in a variety of ways.  It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured.  And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there.

Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

Pages