Expert Insights

I think for a lot of people, before they started chemistry, especially if they haven't done any chemistry before, they've got no real understanding of the difference between macroscopic things and microscopic and atomic sized things. We all know how important that distinction is.

When they come in I give a very simple quiz which we do using clickers, the sort of anonymous audience response systems, and I just test a few multiple choice questions, just testing their understanding of some of those terms and then when I notice that there’s, well, anything more than 10 or 15% of students who don’t correctly understand those terms then we go through a process of exploring what those terms are and why they apply to what they apply to and then I retest that a couple of weeks later.... I notice at the end of the year some of the students can lapse back into their old habits, so it’s something that I am going to need to think of continuing to reinforce.

Too often I think students and others think that analytical chemistry is just that measurement step.  When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve?  What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information.

A lot of it is from colleagues.  Conferences are fantastic.  You know, your chemical education conferences.  I do go to a lot of those.

The culture in the chemistry department was always lots and lots of content.  And that’s changed now because you don’t need it, because they can find it another way, but you’ve got to give them the framework to understand the content.

In the lecture theatre the best strategy there, where you’re confronted by all the constraints of the lecture theatre, is to stop and do stuff with the students, walk around amongst them, see what they’re actually doing... And out of that you might go back and address some aspect of it and revisit it or something like that or you might point them to some tools to use to work out some other aspect.  So in the lecture theatre it’s very much for me a case of stopping and going and seeing what they’re doing and if you don’t then clearly you don’t know. 

I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals.  So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together.  For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score.

Students should [only] be limited by students' curiosity.

I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. 

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.

Pages