Expert Insights

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

We teach way too much stuff.  We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now.  I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems.  And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling.  And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything.

I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think.

I have one slide where I'm first demonstrating how we use curly arrows and that shows an arrow going in a particular direction from a nucleophile to an electrophile and emphasising that the arrow shows electrons moving - so it's got to start from where they are.  There has to be some electrons there for them to move.  So the whole screen goes black and comes up with a little orange box of 'never do this' which is an arrow starting from an H+, which has no electrons. The dramatic emphasis that the whole room goes dark and then it's just up there.

So the first thing that I really stress that people do, is that they actually go and watch some classes.  I think that’s the most important thing.  When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work  – how little time the students were on task in quite a few lectures.  Where the lecturer would just be talking and be oblivious to this.  I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on.

I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. 

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching.  Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing.

Pages