It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here. If I say ‘think of a famous physicist’ you probably already have thought of three. Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones. You do the same thing with biologists. If I say to think of a famous chemist … that's within chemistry circles, we can't do it. We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea. So for some reason … we've never … chemists have never been able to popularise our topic, our content. We've never been able to make it exciting enough that someone who is not studying it still wants to know about it. And so I do think we've got a bigger challenge, for whatever reason. Maybe there's something about chemistry that makes it less enjoyable, I don’t know. There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity. You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein. And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing. I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue. We teach them in third year to the remaining hard core people that are left.
Expert Insights
|
|
So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks. So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards. So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. |
|
So the first thing that I really stress that people do, is that they actually go and watch some classes. I think that’s the most important thing. When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work – how little time the students were on task in quite a few lectures. Where the lecturer would just be talking and be oblivious to this. I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on. |
At the start of every class my standard thing was ‘can you see me, can you hear me, can you see the slide?’ I would always look up the back for someone to put their hand up and always I would never talk to the front row. I’d always talk middle and back row and if someone was talking in the back row I’d pick them up and say ‘hey you, be quiet’ and then they know that I’ve seen them. So you’ve got to focus on the whole class not just the people at the front - the people at the back as well. Because sometimes smart people sit at the back as well, not just the dummies who want to get out. You’ve got to make sure you know everyone in the class. And the surprising thing is that most kids sit in the same place every lecture. So you can actually recognise where they are and who they are. You don’t know their names but there’s a pattern in the way they sit. You’ve just got to be aware of that. So the trick is to embrace the whole class with your - you know physically, just with your eyes and and the way you talk. You know, when you wave your hands, wave it to the back row. Make sure they’re involved. |
|
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |
A lot of it is from colleagues. Conferences are fantastic. You know, your chemical education conferences. I do go to a lot of those. |
|
Many years ago, lecturers only had one style, you know they just wrote on the blackboard, actual blackboard with chalk. That was the only style. They just talked... That’s all I knew so that was fine and so I thought, well I’ll just continue that and the students weren’t understanding what I was saying and explaining and I thought, oh hang on what’s going on here? This is the way I was taught. Come on, it should work. So, yeah I think it would be good if someone told me that at the start, but as I said because I’d end up doing my Diploma of Education that opened my eyes to that and that’s when I started to utilise different strategies and I appreciate that not everyone is going to understand one way of, my teaching way. |
So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer. And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well. So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them. |
|
It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change. They can't do higher level manipulations without an understanding of three-dimensional nature of molecules. |
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License