Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.
Expert Insights
|
|
The culture in the chemistry department was always lots and lots of content. And that’s changed now because you don’t need it, because they can find it another way, but you’ve got to give them the framework to understand the content. |
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
So the first thing that I really stress that people do, is that they actually go and watch some classes. I think that’s the most important thing. When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work – how little time the students were on task in quite a few lectures. Where the lecturer would just be talking and be oblivious to this. I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on. |
|
It’s continuous learning. I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’ So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.' If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again. Many students don’t see that there is a limited number of problems that can be asked on a certain topic. |
We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science. But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was. They didn’t understand what I meant by compare and contrast or discuss or argue for this. So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about? What am I actually asking you to do? What do you need to think about? And not assuming that they know how to write an essay. |
|
I think it’s really important that people mark assessments. Mark, and see what the students actually end up knowing. Because they can pretend to themselves that students have understood everything, but if they actually have to mark the exam papers, or the quizzes, or whatever it is, they actually are confronted with the students actual knowledge. I think that’s really influential. The second semester of teaching, when you think you’ve explained things well, and then 90% of the class have not got it, then it’s not the students fault at that point, it’s probably your fault. So I think that assessment is really important. Not only for the students, but also for the marker. I think you can learn a lot from marking. |
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |
|
Try to show students that the fundamental form of matter is energy. Then that this can be represented as particles with mass or as waves (wave functions). Then try to show them that we use the model particle/wave that best helps us understand different phenomena. In class I often do this by asking questions about wave mechanics in particle terms. eg. If a 2s orbital has a node how can the electron pass accross it? Then explain to them the limitations and advantages of each approach. |
I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching. Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License