Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.
Expert Insights
|
|
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |
|
And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections. |
Too often I think students and others think that analytical chemistry is just that measurement step. When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve? What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information. |
|
We teach way too much stuff. We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now. I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems. And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling. And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything. |
I use a lot of eye contact. The people in the back row are not anonymous, you know. Make sure you’re talking to them and make sure that you see them. |
|
The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect. But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work. |
I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. |
|
When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest. It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world. How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off? How is it they’re able to stay there with gluey legs or what? But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics. It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more. |
When they come in I give a very simple quiz which we do using clickers, the sort of anonymous audience response systems, and I just test a few multiple choice questions, just testing their understanding of some of those terms and then when I notice that there’s, well, anything more than 10 or 15% of students who don’t correctly understand those terms then we go through a process of exploring what those terms are and why they apply to what they apply to and then I retest that a couple of weeks later.... I notice at the end of the year some of the students can lapse back into their old habits, so it’s something that I am going to need to think of continuing to reinforce. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License