I think it’s really important that people mark assessments. Mark, and see what the students actually end up knowing. Because they can pretend to themselves that students have understood everything, but if they actually have to mark the exam papers, or the quizzes, or whatever it is, they actually are confronted with the students actual knowledge. I think that’s really influential. The second semester of teaching, when you think you’ve explained things well, and then 90% of the class have not got it, then it’s not the students fault at that point, it’s probably your fault. So I think that assessment is really important. Not only for the students, but also for the marker. I think you can learn a lot from marking.
Expert Insights
|
|
I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course. For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material. Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets. So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced. |
|
I think we’ve all sat in lectures and gone, that was dreadful, so we learned quite a lot from understanding how not to do it as well as how actually to do it. And of course the key is preparation and organisation..... whenever I go into a class knowing that I am beautifully organised, that gives you that extra confidence to project and to present, and you come away with that feeling that you know that the class has gone well and you’ve got the information across to the students in the way that you wanted. |
[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences. Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test. These are all forms of analytical chemistry. So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences. Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry. The difficulty is of course to ensure that misconceptions don’t creep in. |
|
I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand. |
I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality. |
|
Too often I think students and others think that analytical chemistry is just that measurement step. When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve? What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information. |
It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here. If I say ‘think of a famous physicist’ you probably already have thought of three. Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones. You do the same thing with biologists. If I say to think of a famous chemist … that's within chemistry circles, we can't do it. We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea. So for some reason … we've never … chemists have never been able to popularise our topic, our content. We've never been able to make it exciting enough that someone who is not studying it still wants to know about it. And so I do think we've got a bigger challenge, for whatever reason. Maybe there's something about chemistry that makes it less enjoyable, I don’t know. There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity. You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein. And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing. I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue. We teach them in third year to the remaining hard core people that are left. |
|
When they come in I give a very simple quiz which we do using clickers, the sort of anonymous audience response systems, and I just test a few multiple choice questions, just testing their understanding of some of those terms and then when I notice that there’s, well, anything more than 10 or 15% of students who don’t correctly understand those terms then we go through a process of exploring what those terms are and why they apply to what they apply to and then I retest that a couple of weeks later.... I notice at the end of the year some of the students can lapse back into their old habits, so it’s something that I am going to need to think of continuing to reinforce. |
I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals. So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together. For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License